这篇文章主要讲解了“怎么使用Spark的cache机制观察效率的提升”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么使用Spark的cache机制观察效率的提升”吧!
使用Spark的cache机制观察一下效率的提升
基于上面的内容,我们在执行一下以下语句:
发现同样计算结果是15.
此时我们在进入Web控制台:
发现控制台中清晰展示我们执行了两次“count”操作。
现在我们把“sparks”这个变量执行一下“cache”操作:
此时在执行count操作,查看Web控制台:
此时发现我们前后执行的三次count操作耗时分别是0.7s、0.3s、0.5s。
此时我们 第四次执行count操作,看一下Web控制台的效果:
控制台上清晰的第四次操作仅仅花费了17ms,比前三次的操作速度大约快了30倍的样子。这就是缓存带来的巨大速度提升,而基于缓存是Spark的计算的核心之一!
第三步:构建Spark的IDE开发环境
Step 1:目前世界上Spark首选的InteIIiJ IDE开发工具是IDEA,我们下载InteIIiJ IDEA:
这里下载是最新版本Version 13.1.4:
关于版本的选择,官方给出了如下选择依据:
我们在这里选择Linux系统下的”Community Edition FREE”这个版本,这能完全满足我们任意复杂程度的Scala开发需求。
家林下载完成后保存在本地的如下位置:
Step 2:安装IDEA并配置IDEA系统环境变量
创建“/usr/local/idea”目录:
把我们下载的idea压缩包解压到该目录下:
安装完成后,为了方便使用其bin目录下的命令,我们把它配置在“~/.bashrc”:
感谢各位的阅读,以上就是“怎么使用Spark的cache机制观察效率的提升”的内容了,经过本文的学习后,相信大家对怎么使用Spark的cache机制观察效率的提升这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是云搜网,小编将为大家推送更多相关知识点的文章,欢迎关注!